• de
  • fr
  • it
  • en
  • Laureates
    • Laureate 2024
    • Prize 2024
    • Past laureates
    • Subsequent Nobel Prize laureates
  • Nomination
    • Nomination 2025
  • The award ceremony
    • The award ceremony 2024
    • The award ceremony 2023
    • The award ceremony 2022
    • The award ceremony 2021
    • The award ceremony 2020
    • The award ceremony 2019
    • The award ceremony 2018
    • The award ceremonies of the past
  • Activities
    • Lecture 2025
    • Workshop 2024
    • Lecture 2024
  • Marcel Benoist
    • The founder
    • The legacy
  • Foundation
    • Foundation
    • News
    • Board of Trustees
    • Patronage Committee and Friends
    • Create excellence!
    • Foundation assets
    • Contact
  • Laureates
    • Laureate 2024
    • Prize 2024
    • Past laureates
    • Subsequent Nobel Prize laureates
  • Nomination
    • Nomination 2025
  • The award ceremony
    • The award ceremony 2024
    • The award ceremony 2023
    • The award ceremony 2022
    • The award ceremony 2021
    • The award ceremony 2020
    • The award ceremony 2019
    • The award ceremony 2018
    • The award ceremonies of the past
  • Activities
    • Lecture 2025
    • Workshop 2024
    • Lecture 2024
  • Marcel Benoist
    • The founder
    • The legacy
  • Foundation
    • Foundation
    • News
    • Board of Trustees
    • Patronage Committee and Friends
    • Create excellence!
    • Foundation assets
    • Contact

Ewald Weibel

Laureate 1974: Ewald Weibel

“[…] in recognition of his groundbreaking work on the functional morphology of the lungs. […] The progress he made and his work on perfecting morphometry and stereological methods to analyse electron micrographs of cells and tissues opened up new avenues in the quantitative study of biological structures.”

Moderne morphometrische Verfahren erlauben es, licht- oder elektronenmikroskopische Aufnahmen biologischer Ultradünnschnitte in Bezug auf die ursprüngliche räumliche Form des Objektes auszuwerten. W. entwickelte solche Verfahren, um den Gasaustausch in der Lunge auf eine neue Art zu berechnen. Aus mikroskopisch kleinen Ausschnitten der Alveolen (Lungenbläschen) berechnete er deren gesamte Oberfläche, das Kapillarvolumen sowie die Schichtdicke, die der Sauerstoff überwinden muss, um in die roten Blutkörperchen zu gelangen (Luft-Blut-Schranke). Aufgrund dieser Werte konnte er die Gasaustauschleistung der Lunge berechnen. Da dieser theoretische Wert aber viel höher lag als der von den Physiologen auf herkömmliche Art berechnete, musste nach einer Erklärung dieser Differenz gesucht werden. W. und seinen Mitarbeitern gelang schliesslich die Darstellung eines bereits früher vermuteten dünnen Flüssigkeitsfilms, der die Lungenbläschen überzieht und für deren Offenhaltung sorgt. Bezog man u.a. dessen Existenz in die Berechnungen ein, so stimmten die physiologischen und morphometrischen Werte für die Gasaustauschleistung der Lunge recht gut überein. Hervorgehoben wurde im speziellen, dass die Arbeiten W.s eine vollkommene Beherrschung der elektronenmikroskopischen Technik voraussetzten.

Contact

Marcel Benoist Foundation
State Secretariat for Education,
Research and Innovation SERI
Einsteinstrasse 2
CH – 3003 Bern

  • Legal notice